Optimal point process filtering and estimation of the coalescent process.
نویسندگان
چکیده
The coalescent process is a widely used approach for inferring the demographic history of a population, from samples of its genetic diversity. Several parametric and non-parametric coalescent inference methods, involving Markov chain Monte Carlo, Gaussian processes, and other algorithms, already exist. However, these techniques are not always easy to adapt and apply, thus creating a need for alternative methodologies. We introduce the Bayesian Snyder filter as an easily implementable and flexible minimum mean square error estimator for parametric demographic functions on fixed genealogies. By reinterpreting the coalescent as a self-exciting Markov process, we show that the Snyder filter can be applied to both isochronously and heterochronously sampled datasets. We analytically solve the filter equations for the constant population size Kingman coalescent, derive expressions for its mean squared estimation error, and estimate its robustness to prior distribution specification. For populations with deterministically time-varying size we numerically solve the Snyder equations, and test this solution on common demographic models. We find that the Snyder filter accurately recovers the true demographic history for these models. We also apply the filter to a well-studied, dataset of hepatitis C virus sequences and show that the filter compares well to a popular phylodynamic inference method. The Snyder filter is an exact (given discretised priors, it does not approximate the posterior) and direct Bayesian estimation method that has the potential to become a useful alternative tool for coalescent inference.
منابع مشابه
Optimal Point Process Filtering of the Coalescent Process
This manuscript explores the viability of using optimal point process (Snyder) filters in order to estimate the underlying parameters of the variable population size coalescent process. Estimating these population parameters is an important area of research in phylodynamics, especially given the widespread use of the coalescent in modelling the relationship between the genetic diversity and epi...
متن کاملChange Point Estimation of the Stationary State in Auto Regressive Moving Average Models, Using Maximum Likelihood Estimation and Singular Value Decomposition-based Filtering
In this paper, for the first time, the subject of change point estimation has been utilized in the stationary state of auto regressive moving average (ARMA) (1, 1). In the monitoring phase, in case the features of the question pursue a time series, i.e., ARMA(1,1), on the basis of the maximum likelihood technique, an approach will be developed for the estimation of the stationary state’s change...
متن کاملChange Point Estimation of a Process Variance with a Linear Trend Disturbance
When a change occurs in a process, one expects to receive a signal from a control chart as quickly as possible. Upon the receipt of signal from the control chart a search for identifying the source of disturbance begins. However, searching for assignable cause around the signal time, due to the fact that the disturbance may have manifested itself into the rocess sometimes back, may not always l...
متن کاملBayesian Estimation of the Multiple Change Points in Gamma Process Using X-bar chart
The process personnel always seek the opportunity to improve the processes. One of the essential steps for process improvement is to quickly recognize the starting time or the change point of a process disturbance. Different from the traditional normally distributed assumption for a process, this study considers a process which follows a gamma process. In addition, we consider the possibility o...
متن کاملDynamical Control of Computations Using the Family of Optimal Two-point Methods to Solve Nonlinear Equations
One of the considerable discussions for solving the nonlinear equations is to find the optimal iteration, and to use a proper termination criterion which is able to obtain a high accuracy for the numerical solution. In this paper, for a certain class of the family of optimal two-point methods, we propose a new scheme based on the stochastic arithmetic to find the optimal number of iterations in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of theoretical biology
دوره 421 شماره
صفحات -
تاریخ انتشار 2017